

Water Services for All

DRINKING WATER QUALITY AND EFFLUENT MONITORING GUIDELINE

Published by Water Services Regulatory Board © Water Services Regulatory Board

Supported by **GiZ** Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

TABLE OF CONTENTS

List of	f Abbrevia	tions	
List of	f Symbols		
1.0	Introdu	iction	
1.1	Purpos	e of the Guideline	
1.2	Water (Quality Monitoring	
1.3	Source	s of Water	
	1.3.1	Groundwater Quality	
	1.3.2	Surface Water Quality	9
1.4	Potable	e Water	
	1.4.1	Criteria for Frequency of Water Sampling	
	1.4.2	Parameters	
		1.4.3.1 Bacteriological Parameters	
		1.4.3.2 Physiochemical Parameter	
		1.4.3.3 Sampling Points	
		1.4.3.4 Sample Collection	
	1.4.3	Types of Monitoring Programs	
		1.4.3.1 Self Monitoring	
		1.4.3.2 Scheduled Monitoring	
		1.4.3.3 Unscheduled Monitoring	
		1.4.3.4 Demand Monitoring	
	1.4.4	Preparation of Monitoring Program and Sampling Schedules	
1.5	Effluen	t	
	1.5.1	Constituents of Waste Water Ordinance	
	1.5.2	Sewer Use Ordinance	
	1.5.3	Types of Monitoring Programs	
		1.5.3.1 Self Monitoring	
		1.5.3.2 Scheduled Monitoring	
		1.5.3.3 Unscheduled Monitoring	
		1.5.3.4 Demand Monitoring	
	1.5.4 1.5.5	Sampling Points	-
	1.5.5 1.5.6	Sample Collection Sample Analysis	
1.6		oring for Compliance	
1.7		ing System	
т .,	1.7.1	Reporting by Industries	
	1.7.2	Reporting by WSP	
	1.7.3	Reporting by WSB	
1.8		ation of Results	

LIST OF TABLES

Table 1:	Guideline values for raw water	10
Table 2:	Required number of tests for residual chlorine and bacteriological determination	11
Table 3:	Recommended minimum sample numbers for faecal indicator testing in distribution systems	11
Table 4:	Required number of tests for physiochemical parameters	12

ANNEXES

Schedule 1:	Aesthetic quality requirements for drinking water and bottled drinking water	
	(Source: Adopted from KS 05-459: Part 1: 1996)	19
Schedule 2:	Limits for inorganic contaminants in drinking water and bottled drinking water	
	(Source: Adopted from KS 05-459: Part 1: 1996)	
Schedule 3:	Limits for organic constituents of health Significance in drinking water and bottled drinking water (Source: Adopted from KS 05-459: Part 1: 1996)	
Schedule 4:	Limits for radioactive materials in drinking water and bottled drinking water (Source: Adopted from KS 05-459: Part 1: 1996)	
Schedule 5:	Microbiological limits for drinking water and containerized drinking water (Source: Adopted from KS 05-459: Part 1: 1996)	
Schedule 6:	Guideline values for discharge into public Sewers [The Environmental Management and Co-ordination (Water Quality) Regulations, 2006]	
Schedule 7:	Guideline values for discharge into public Water [The Environmental Management and Co-ordination (Water Quality) Regulations, 2006]	
Schedule 8:	Effluent Dischargers Monthly Report	
Schedule 9:	WSP's Sample Schedules for Water Quality Monitoring	
Schedule 10:	WSP's Sample Schedules for Effluent Monitoring	27
Schedule 11:	WSP's Monthly Report on Water Quality Testing	
Schedule 12:	WSB's Monthly Report on Water and Effluent Monitoring	
Schedule 13:	WSP's Annual Report on Water Quality Testing	
Schedule 14:	WSP's Annual Report on Effluent Monitoring	
Schedule 15:	WSB's Quarterly Report on Water Quality Monitoring	34
Schedule 16:	WSB's Quarterly Report on Effluent Monitoring	35
Schedule 17:	WSB's Annual Report on Water Quality Monitoring	35
Schedule 18:	WSB's Annual Report on Effluent Monitoring	

LIST OF ABBREVIATIONS

BOD	Biochemical oxygen Demand
COD	Chemical Oxygen Demand
GS	Galvanized Steel
KS	Kenyan Standards
KEBS	Kenya Bureau of Standards
NEMA	National Environment Management Authority
NTU	Neplelometric Turdidity Units
THM	TriHalo Methane
WHO	World Health organization
WASREB	Water Services Regulatory Board
WSB	Water Services Board
WSP	Water Service Provider

LIST OF SYMBOLS

AI	Aluminum
Al_2O_3	Aluminum Trioxide
As	Arsenic
Ba	Barium
Са	Calcium
CaCO ₃	Calcium Carbonate
Cd	Cadmium
Cl	Chloride
CN-	Cyanide
Со	Cobalt
Cr	Chromium
Cu	Copper
F [.]	Fluoride
Fe	Iron
Hg	Mercury
Mg	Magnesium
Mn	Manganese
Ν	Nitrogen
Na	Sodium
NH_3	Ammonia
Ni	Nickel
NO ₃ -	Nitrate
Pb	Lead
S	Sulphur
S ²⁻	Sulphur
Se	Selenium
Sn	Tin
SO32-	Sulphite
SO42-	Sulphate
SS	Suspended Solids
Zn	Zinc

1.0 Introduction

Under section 47 the Water Act 2002, requires WASREB to determine standards for the provision of water services to consumers and to monitor compliance with established standards for the design, construction, operation and maintenance of facilities for water services. Further the licence and Service Provision Agreement (SPA) oblige the licencee and WSP to ensure provision of potable water and safe treatment and disposal of waste water

Compliance with this guideline is a condition of the licence granted to the the water services board.

1.1 Purpose of the Guideline

The purpose of this guideline is to:

- Promote transparency in the methods of water quality monitoring employed by the WSPs and thus build public confidence in service provision;
- Ensure through regular monitoring that the quality of water provided meets the standards set by KEBS;
- Create awareness among the Water Services Boards (WSBs) and Water Service Providers (WSPs) on the water quality monitoring requirements;
- Ensure that all WSBs and WSPs follow a systematic way of water quality monitoring so as to have uniformity of the process;
- Ensure a minimum standard of water quality monitoring at acceptable costs; and
- Create awareness among consumers that information regarding water quality will be made available by the WSPs.

The guideline contain information on establishing the minimum number of samples to be taken, water quality parameters to be measured, recording and reporting/ publication of results.

The effectiveness of the water quality and effluent monitoring system established through these guidelines is based on five factors:

- Elaboration and application of an appropriate sampling programme (regular planning);
- Costs of water quality monitoring should be reflected in the annual budget;
- Sample collection and preservation;
- Analysis and recording; and
- Reporting and record keeping.

Improper actions in one of these areas will lead to an insufficient number of samples, inaccurate results and consequently wrong perception of the situation on the ground.

In order to ensure adequate understanding and application of these guidelines and their requirements every WSP must have at least an adequately trained responsible person to carry out their water quality programmes. It is imperative that the person in charge understands fully the importance of their duties.

1.2 Water Quality Monitoring

Water quality is one of the main indicators of the quality of service provided to the consumer. Water quality has an impact on both the public health and aesthetic value of water. For effective monitoring of water quality it is necessary to have both internal self monitoring by the WSP and an independent monitoring by the WSB and WASREB. For example one of the principles in the WHO guidelines on water quality standards is to have separate roles in monitoring by the WSP and that by an independent regulating body. Independent monitoring can also be undertaken by the ministry of Water and Irrigation (MW&I), Kenya Bureau of Standards (KEBS), Ministry of Health (MoH) and the National Environment Management Authority (NEMA). In this regard, WSPs are required to undertake their own monitoring of water quality as part of their quality assurance programme and process control. Experience however has shown that without clear instructions through guidelines, some WSPs tend to carry out insufficient number of tests.

1.3 Sources of Water

The most common sources of water in Kenya are surface and ground water. Rain water is used to supplement domestic and agricultural water; however, it should be noted that in urban areas where industrial activities are high, the rainwater can be acidic.

1.3.1 Groundwater Quality

Composition of groundwater depends on:

- Composition of the soil (humic substances organic matter and minerals : Fe2+, Mn2+, NH3, H2S, CH4, HCO3-, SiO2 and F-);
- Contamination from the surroundings;
- Quality of the water to be infiltrated (rain, surface water); and
- Retention time of the groundwater.

The groundwater composition is affected by human polluting activities, which include agriculture, cattle breeding, industrial and domestic activities. In this case, shallow aquifers suffer most.

1.3.2 Surface Water Quality

The natural and human activities that cause change of quality of surface water include:

- Weathering rocks/ erosion;
- Leaching the soil/dissolving materials;
- Decay of organic mater (leaves, branches of trees, which result in humid substances);
- Flooding river banks (high turbidity);
- Industrial and domestic wastes (oils and grease, detergents, radioactive substances, synthetic organic chemicals, inorganic salts etc);
- Agricultural run off (fertilizers, pesticides, herbicides etc.); and
- Thermal wastes (increased temperature from cooling waters).

1.4 Potable Water

The basic requirements for drinking water are that it should be:

- Free from pathogenic (disease causing) organisms;
- Containing no chemicals that have an adverse or long term effect on human health;
- Fairly clear (i.e. low turbidity, little colour);
- Not saline (salty);
- Containing no compounds that cause an offensive taste or smell; and
- Not causing an encrustation of the water supply system not staining clothes washed in it.

Surface water sources rarely meet these requirements without adequate treatment. The treatment processes here are those involving physical, chemical and bacteriological changes so as to transform the raw water to potable water. Table 1 below gives the recommended treatment process for various raw waters.

Coliform organism (Number/ 100ml)	Recommended treatment		
0-50	Bacterial quality requiring disinfection only		
50-5000	Bacterial quality requiring full treatment (coagulation, sedimentation, filtration and disinfection only)		
5000-50000	Heavy pollution requiring extensive treatment		
Greater than 50000	Very heavy pollution unacceptable as a source unless no alternative exists. Special treatment needed.		

Table 1 Guideline Values for Raw water Treatment

When more than 40% of the number of coliforms is found to be of the feacal category group, the water should be considered to fall into the next higher category with respect to the treatment required.

In order to ensure that WSPs supply potable water, the role of WASREB is to ensure that a specified acceptable minimum standard of practice is followed by the WSPs, which includes:

- Monitoring the minimum required number of samples and tests on water supply and ef fluent discharges;
- Collecting data on compliance on standards; and
- Ensuring publication of test results.

1.4.1 Criteria for Frequency of Water Sampling

The criteria used for determining the frequency of sampling in these guidelines include:

- Source of the water whether ground or surface water;
- Volume produced and Population served; and
- Number of tests to be conducted both bacteriological and physiochemical.

1.4.2 Parameters

Limits for all parameters are defined by KEBS and should be seen as binding also in the context of these guidelines (Schedules 1-5). All the parameters that are required by KEBS must however be checked on as per their requirement.

The required number of samples to be tested is given in the Tables 2 and 3. Production figures in these tables refer to the annual production for each particular scheme served by a WSP.

1.4.2.1 Bacteriological Parameters

The bacteriological quality is very essential and should be tested before selection and during operation of the supply. Microbiological parameters can have an immediate and significant impact on human health and must therefore be analysed frequently. For bacteriological tests coliform tests will be used to show presence of bacteria. Upon confirmation a faecal coliform test has to be carried out to check for faecal contamination. Residual chlorine tests are associated with bacteriological parameters as chlorine is used to disinfect the water in the treatment process. Presence of residual chlorine indicates sufficient disinfection but does not specifically measure or quantify presence of bacteria. Therefore, a certain number of coliform tests have to be carried out in addition. The parameters and minimum number of samples to be analysed for the basic routine monitoring are shown in Table 2.

Table 2: Required number of tests for residual chlorine and bacteriological determination based on volume of water produced

	Number of samples per year per	parameter in the network	
	For annual water production For annual water production		
<240,000 m ³		>240,000 m ³	
Bacteriological	12	12 + 1 for each additional 30,000 m ³	
		above 240,000 m ³	
Residual chlorine 48		48 + 1 for each additional 15,000 m ³	
		above 240,000 m ³	

Table 3: Recommended minimum sample numbers for faecal indicator testing in distribution systems.

Population	Total number of samples per year
Point sources	Progressive sampling of all sources over 3-to 5 – year cycles (maximum)
Piped supplies	
<5000	12
5000 - 100 000	12 per 5000 head of population
>100 000 - 500 000	12 per 10 000 head of population plus an additional 120 samples
>500 000	12 per 100 000 head of population plus an additional 180 samples

The numbers in Tables 2 and 3 represent the minimum number of tests the WSPs have to carry out. The providers are however advised to take more samples if they feel it is required under their local conditions. The providers are obliged to carry out additional tests if any doubt about the

quality of the water supplied to the customer or regarding contamination of the source occurs. WASREB may demand additional tests in an event of water borne disease outbreak that may be directly attributed to water services provision.

Where more than one network exists, the number of samples should be distributed over the particular networks, taking the volume of water supplied by the separate networks into account. The number of tests required for each network should be equally distributed over time (i.e. if 208 tests per year are required, 4 samples should be taken every week). Where fluctuations occur in the production figures, WSPs might decide to deviate from this rule and take an appropriate proportional number of samples. In this case the minimum number of samples required per year either according to Table 2 or 3 must still be achieved. In such a case however, an explanation has to be given to the WSB and WASREB with the submission of the proposed sampling schedule.

It is also important to check the quality of the water after each major repair job so as to ascertain restoration to previous conditions. In cases where a microbiological test is outside the recommended limit, a sample must immediately be collected to check the validity of the result.

1.4.2.2 Physiochemical Parameter

Physiochemical parameters usually do not have an immediate impact on human health. However, some physiochemical parameters are important in giving a guide to the quality of water treated and distributed to the consumers. The required sampling frequency for these parameters is shown in Table 4.

Number of	Groundwater		Surface water	
samples per year per parameter*	Water production per year		Water production per year	
	<240,000 m³	>240,000 m³	<240,000 m³	>240,000 m³
Turbidity, pH, Colour	4	6	12	12 + 1 for each additional 60,000 m ³ above 240,000m ³
Others**	Every six months***	1	2	4

Table 4: Required number of tests for physiochemical parameters

* The required number of tests per parameter applies to both the network and each source

** Others refer to parameters as specified in Schedules 1-5

*** More frequent sampling might be required where there is known or suspected contami nation e.g. from industry, agriculture or human settlements

Note: The number of tests exclude those for process control.

Besides the minimum required number of test at the network and at the source, it is in the interest of the WSP to monitor closely the above mentioned parameters during process control not only to ensure good quality water but also to save costs through optimal dosage of chemicals.

1.4.2.3 Sampling Points

Identification of strategic sampling points within the distribution system is important in ensuring that these are representative of the entire system and at the same time ensuring that particular problem areas are identified. In selecting sampling points, the following general selection criteria should be taken into consideration:

- Samples taken have to be representative of the different sources from which water is obtained by the consumers or enters the system;
- Sampling points should include the most unfavorable sources or places in the supply sys tem, particularly points of possible contamination such as unprotected sources, loops, reservoirs, low-pressure zones, ends of the system etc; and
- Sampling points should be uniformly distributed throughout a network.

1.4.2.4 Sample Collection

In order to minimize inconsistencies and ensure the accuracy of the process, it is recommended that the sampling should be done by qualified persons in accordance with the Kenya Standard KS 05-459 Parts 2-6.

1.4.3 Types of Monitoring Programs

A monitoring program will involve some surveillance mechanisms that include: self-monitoring, scheduled monitoring and demand monitoring.

1.4.3.1 Self Monitoring

Self monitoring will be undertaken by the WSP in accordance with the sampling schedule. The monitoring frequencies listed in the sampling schedule are the minimum self-monitoring frequencies that must be performed; however the provider may choose to perform monitoring at a greater frequency than specified if so desired.

1.4.3.2 Scheduled Monitoring

Scheduled monitoring involves the systematic sampling and inspection by the WSB in accordance with a predetermined schedule. Scheduled monitoring will serve to check for compliance with the SPA requirements.

1.4.3.3 Unscheduled Monitoring

Unscheduled monitoring is instituted by the WSB to provide a less formal type of surveillance on the provider. Similarly, WASREB can undertake unscheduled monitoring to check water and effluent compliance by the WSPs and WSBs.

1.4.4.4 Demand Monitoring

The WSP conducts demand monitoring when an upset or other disruption of system operation occurs. In addition, the WSB and WASREB depending on the severity of the occurrence can undertake demand monitoring as and when required.

1.4.5 Preparation of Monitoring Program and Sampling Schedules

All WSPs must elaborate an annual monitoring program, calculate the costs and include it in their yearly budget. A sampling schedule for all networks is part of the monitoring program.

Sampling schedules give the dates as to when and where sampling has to be done and which parameters will be tested. This is an important aspect of planning for water quality monitoring and must be given high priority. The sampling schedules at least for each separate network must be done on an annual basis based on projected production and has to be available for inspection when required. The sampling schedules should be reviewed on a quarterly basis and should be adjusted if the difference between projected and actual production figures exceeds 10 %. Nevertheless, the actual number of tests to be carried out has to follow the requirements of Tables 2 and 3.

The sampling schedule will be done for routine sampling and should include all the strategic points. However, the reactive sampling in response to queries or other problems occurring will have to be done additionally and cannot be counted as scheduled sample thereby reducing the number of remaining samples required. At the end of the financial year an assessment of the planned schedule will have to be done versus what has happened on the ground.

1.5 Effluent

1.5.1 Constituents of Waste Water Ordinance

Wastewater is return water after domestic and industrial use. The constituents of wastewater can be classified into two main categories: Organic and Inorganic wastes.

(i) Organic wastes

These come mainly from domestic wastewater although industries also contribute a substantial amount. Some of these organic wastes are from vegetable and fruit packag ing, oils and fat, dairy processing, meat packaging, tanning, paper, synthetic detergents, and fiber wood among others.

(ii) Inorganic wastes

Apart from organic wastes domestic wastewater contains inorganic compounds. Indus tries are a source of these wastes too. Some industries may introduce inorganic sub stances such as chromium, mercury, cyanide and copper, which are very toxic to aquatic life. There is however other major types of wastes that do not fit either in the organic and inorganic classification. These are heat (thermal) and radioactive wastes, where waters with temperatures outside the recommended range of 20-35 °C may come from cooling processes used by industry and from thermal power stations generating

electricity. Radioactive materials are usually controlled at their source, but could come from hospitals or research laboratories.

Wastewater if not treated properly causes problems in the receiving waters. Some of the problems include Oxygen depletion resulting in deaths of aquatic organisms and adverse effect on human health. Adverse effect on clarity and colour affects the popularity of the water for recreation. Waste discharges may also contain toxic substances, such as heavy metals (lead, mercury, cadmium and chromium) or cyanide, which may affect the use of the receiving water for domestic purposes or aquatic life. Plant effluents chlorinated for disinfection purposes may have to be dechlorinated to protect receiving waters from toxic effects or residual chlorine.

This guideline serves to assist the WSPs:

- Determine the effluent quality as it is released into the environment;
- Check on the operational efficiency of the wastewater treatment system; and
- Assist WSPs in the monitoring of industrial effluent in their areas.

Once a wastewater treatment system has been commissioned, a routine monitoring and evaluation programme should be established so that its performance could be verified and the actual quality of its effluent established, Compliance with the established discharge standards is then determined.

The results of such a monitoring programme could give early warning on treatment works that have failed to meet their requirements and thus prepare for remedial measures to avoid pollution of the receiving water body.

The evaluation of wastewater treatment performance and behaviour, although a much more complex procedure than the routine monitoring of effluent quality, is nonetheless extremely useful as it provides information on how under loaded or overloaded the system is, and thus by how much, if any, the loading on the system can be safely increased as the service area expands, or whether expansion of the treatment facilities is required. It also indicates how the design of future installations might be improved to take account of local conditions.

1.5.2 Sewer Use Ordinance

Section 76(1) of the Water Act prohibits any trade premises from discharging any trade effluent without the consent of the licencee. In this regard all dischargers of trade effluent will be required to obtain a Sewer Use Ordinance (SUO) permit, the application of which shall be made to the licensee and shall state the following:-

- a) The nature and composition of the trade effluent;
- b) The maximum quantity of the effluent which is proposed to discharge on any one day;
- c) The highest rate at which it is proposed to discharge the effluent;
- d) Daily fluctuations of the characteristics of the effluent; and
- e) Any other information required by the licensee.

It is the responsibility of the industrialist to routinely monitor the quality of effluent being discharged to ensure that it is in accordance with the requirements of schedule 6. The WSP shall from time to time with or without notice monitor the effluent being discharged by the industries to ensure compliance with the standards. In cases where the effluent does not meet these standards then it is the responsibility of the operator to pre-treat the effluent before discharge.

1.5.3 Types of Monitoring Programs

A monitoring program will involve some surveillance mechanisms that include: self-monitoring, scheduled monitoring, unscheduled monitoring and demand monitoring. Self monitoring will be undertaken by the industrialist in accordance with the requirements of the SUO permit whereas the others are a responsibility of the WSP.

1.5.3.1 Self Monitoring

Since the WSP may not be able to perform all the various monitoring functions required for industrial contributors, a program of self-monitoring should be implemented. Using this format, each major contributor is required to do its own sampling and analysis. The monitoring frequencies should be listed in the SUO permit as the minimum self-monitoring frequencies that must be performed to meet the requirements of the permit. The permittee may choose to perform monitoring at a greater frequency than specified in the permit, if so desire. On the other hand the WSP is required to undertake self monitoring of waste from the treatment plants to ensure compliance with the requirements of Schedule 7.

1.5.3.2 Scheduled Monitoring

Scheduled monitoring involves the systematic sampling and inspection by the WSP or WSB in accordance with a predetermined schedule. Scheduled monitoring will serve to check for compliance with the SUO, SPA and compliance with WASREB's requirements.

1.5.3.3 Unscheduled Monitoring

Unscheduled monitoring is instituted by the WSP to provide a less formal type of surveillance on the industrial dischargers. Similarly, the WSB and WASREB can undertake unscheduled monitoring to check water and effluent compliance by the various WSPs. Such unscheduled surveillance can be used to randomly survey the entire system over an extended period of time.

1.5.3.4 Demand Monitoring

The WSP or WSB can conduct demand monitoring when an upset or other disruption of system operation occurs. In the case of waste water, such occurrences as explosive or corrosive materials in the sewer, operating difficulties (blockages or plugging in the system), and obvious violation of permit or pre-treatment requirements would require demand monitoring.

1.5.4 Sampling Points

Waste water sampling points within a sewage treatment system varies depending on the type of treatment being used. The points must be arranged so that a uniform and true picture of the performance of each unit of the plant is obtained.

Some WSPs may develop an internal sampling plan or organizational planner to keep them organized and to plan the compliance self-monitoring events. The key to gathering defensible data is to organize and plan a compliance self-monitoring event. A sampling plan should be documented in written form, be user-friendly to the sampling staff and include but not limited to the following items:

- Monitoring point(s) description;
- Sampling methods and protocols;
- Flow monitoring and calibration;
- pH monitoring and calibration;
- Parameters for analyses;
- Appropriate sample containers, preservatives and storage; and
- Sample identification and chain unit should develop specification of custody procedures.

1.5.5 Sample Collection

There are four main methods of sampling, that is; the grab (or spot) sample, composite samples over short periods of time, composite sample over 24 hours, and composite samples over 24 hours in relation to flow.

The grab sample is normally not representative and can only give a rough idea of the effluent quality at the time of sampling. The composite sample over a short period is better than the grab sample and is more or less representative of the sewage or effluent quality over that period. The composite sample over 24 hours requires that sampling shifts be arranged over the day. The even-sized samples collected hourly or half-hourly and the main sample made up from this after thorough stirring. Composite samples in relation to flow can only be collected if the works has a flow meter and recorder. Samples are best collected separately at intervals of one hour over the sampling period.

1.5.6 Sample Analysis

All laboratories generating water and effluent data must have a recognized certification. Such certification shall be for the test method and the analyte(s) being measured. The laboratories shall ensure that proficiency tests are performed in each matrix/analyte combination (where available) for which certification is sought. In this regard a WSP is not obliged to install and maintain a laboratory capable of carrying out all the required tests. If certain tests are outsourced, it is the WSP's obligation to verify that the chosen laboratory is certified by KEBS and has adequate capacity in terms of trained personnel, and equipment and can maintain an adequate quality assurance system. The WSP should indicate in the sampling schedule which laboratories it uses for the analysis of the different parameters.

1.6 Monitoring for Compliance

Each WSP must analyse the results of its water and effluent testing in order to ensure compliance with the Kenya Standards as set out in schedules 1-7.

Compliance for both potable water and effluent will be looked at in two ways:

- Number of tests conducted against number of samples planned according to guideline; and
- Number of samples within norm against number of samples tested.

It is the responsibility of the licencee to ensure that the WSPs comply with the requirements of this guideline.

If it is deemed necessary the WSB or WASREB may take a sample to carry out an independent analysis of the sample.

1.7 Reporting System

1.7.1 Reporting by Industries

The industrialists must submit the following reports to the WSP and copies to the WSB:

- a) Sample schedules for self monitoring; and
- b) Monthly and annual report on effluent in accordance with Schedules 8.

1.7.2 Reporting by WSP

The WSPs must submit the following reports to the Water Services Board and copies to WAS-REB:

- a) Sample schedules for both potable water and effluent in accordance with Schedule 9 and 10;
- b) WSP's monthly report on Water Quality and Effluent monitoring according to Schedule 11 and 12; and
- WSP's annual report on Water Quality and Effluent monitoring according to Schedule 13 and 14.

The report should include a summary explanation highlighting the problem areas (non-compliance) and the corrective measures taken.

For each water or sewage treatment works a sample schedule is required and a WSP monthly and annual report on water quality and effluent testing has to be submitted for each treatment work.

1.7.3 Reporting by WSB

WSBs will submit quarterly and annual reports based on the reports submitted by the WSPs which also includes their specific monitoring records. The report should provide a regional summary of the water and effluent quality in the region. In addition corrective actions taken for the problematic areas highlighted in the WSP monthly reports should be indicated.

1.8 Publication of Results

Since the stakeholders have a right to be informed about water and effluent quality, WASREB as the regulator will publish the results in its annual Water Services Sub-sector performance report.

Schedule 1: Aesthetic quality requirements for drinking water and bottled drinking water

(Source: Adopted from KS 05-459: Part 1:1996)

SL .NO	Substance or Characteristic	Unit	Drinking Water	Bottled Drinking Water	Methods of Test
(i)	Colour	True color units	15	15	KS 05 - 459
(ii)	Taste and odour		Shall not be offen- sive to consumers	Shall not be offensive to consumers	KS 05 - 459
(iii)	Suspended matter		Nil	Nil	KS 05 - 459
(iv)	Turbidity	NTU, max	5	1	KS 05 - 459
(v)	Total dissolved solids	mg/1, max	1,500	1,500	KS 05 - 459
(vi)	Hardness as CaCo ₃	mg/1, max	500	500	KS 05 - 459
(vii)	Aluminum as A ₁	mg/1, max	0.1	0.1	KS 05 - 459
(viii)	Chloride as Cl ⁻	mg/1, max	250	250	KS 05 - 459
(ix)	Copper as Cu	mg/1, max	0.1	0.1	KS 05 - 459
(x)	Iron as Fe	mg/1, max	0.3	0.3	KS 05 - 459
(xi)	Manganese as Mn	mg/1, max	0.1	0.1	KS 05 - 459
(xii)	Sodium as Na	mg/1, max	200	200	KS 05 - 459
(xiii)	Sulphate as SO ₄	mg/1, max	400	400	KS 05 - 459
(xiv)	Zinc as Zn	mg/1, max	5	5	KS 05 - 459
(xv)	PH		6.5 to 8.5	6.5 to 8.5	KS 05 - 459
(xvi)	Magnesium as Mg	mg/1, max	100	100	KS 05 - 459
(xvii)	Chlorine concentration	mg/1	0.2+ -0.5	Nil	KS 05 - 459
(xviii)	Calcium as Ca	mg/1, max	250	250	KS 05 - 459
(xiv)	Ammonia (N)	mg/1, max	0.5	0.5	KS 05 - 459
(xv)	Fluoride as F*	mg/l, max	1.5	1.5	KS 05 - 459
(xvi)	Arsenic as As	mg/l, max	0.05	0.05	KS 05 - 459
(xvii)	Cadmium as Cd	mg/l, max	0.005	0.005	KS 05 - 459
(xviii)	Lead as Pb	mg/l, max	0.05	0.05	KS 05 - 459
(xix)	Mercury (total Hg)	mg/l, max	0.001	0.001	KS 05 - 459
(xx)	Selenium as Se	mg/l, max	0.01	0.01	KS 05 - 459
(xxi)	Chromium as Cr	mg/l, max	0.05	0.05	KS 05 - 459
(xxii)	Cyanide as CN	mg/l, max	0.01	0.01	KS 05 - 459
(xxiii)	Phenolic substances	mg/l, max	0.002	0.002	KS 05 - 459
(xxiv)	Barium as Ba	mg/l, max	1.0	1.0	KS 05 - 459
(XXV)	Nitrate as NO ₃	mg/l, max	10	10	KS 05 - 459

The local and climatic conditions necessitate adaptation of Flouride concentration in excess of 1.5 mg/l

In exceptional cases, a Flouride content of 3mg/I can be acceptable in Kenya.

Schedule 2: Limits for inorganic contaminants in drinking water and bottled drinking water (Source: Adopted from KS 05-459: Part 1:1996)

SL .NO	Substance or Characteristic	Unit	Limit of Concentration	Method of Test
(i)	Arsenic as As	mg/1, max	0.05	KS 05 – 459
(ii)	Cadmium as Cd	mg/1, max	0.005	KS 05 – 459
(iii)	Lead as Pb	mg/1, max	0.05	KS 05 - 459
(iv)	Mercury (total as Hg)	mg/1, max	0.001	KS 05 – 459
(v)	Selenium as Se	mg/1, max	0.01	KS 05 – 459
(vi)	Chromium as Cr	mg/1, max	0.05	KS 05 - 459
(vii)	Cyanide As CN	mg/1, max	0.01	KS 05 – 459
(viii)	Phenolic substances	mg/1, max	0.002	KS 05 – 459
(ix)	Barium as Ba	mg/1, max	1.0	KS 05 – 459
(x)	Nitrate as NO ₃	mg/1, max	10	KS 05 – 459
(xi)	Fluoride as F	mg/1, max	1.5	KS 05 - 459

Schedule 3: Limits for organic constituents of health Significance in drinking water and bottled drinking water (Source: Adopted from KS 05-459: Part 1:1996)

SL .NO	Substance or Characteristic	Unit	Limit of Concentration	Method of Test
(i)	Benzene	µg/l, max	10	KS 05 - 459
(iii)	Chlorophenols			KS 05 - 459
	Pentachlorophenol	µg/l, max	10	
	2, 4, 6-Trichlorophenol	µg/l, max	10	
(iv)	Polynuclear aromatic hydrocarbons			KS 05 - 459
	Benzo () p[yrene	µg/I, max	0.01	
(v)	Trihalomethanes			
	Chloroform	µg/l, max	30	KS 05 – 459

Schedule 4: Limits for radioactive materials in drinking water and bottled drinking water (Source: Adopted from KS 05-459: Part 1:1996)

Radioact	ive Material	Limit in Bq/l	Method of Test
(i) Gross alpha activity		0.1	KS 05 - 459
(ii)	Gross Beta activity	1	KS 05 - 459

Note. Formal guidelines are not set for individual radionuclide but rather the approach is based on screening drinking water for the above.

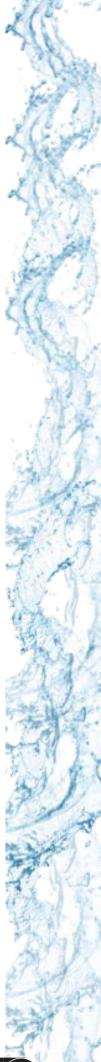
There is however chemicals that have been excluded in guideline value derivation reasons of which include;

- (i) Unlikely to occur in drinking water;
- (ii) Occurrence in drinking water is at levels below which toxic effects may occur;
- (iii) Not of health concern at levels found in drinking water;
- (iv) Available data inadequate to permit derivation of health based guideline value;
- (v) Degrades rapidly in the environment and is not expected to occur at measurable concentration in drinking water supplies.

Schedule 5: Microbiological limits for drinking water and

containerized drinking water

(Source: Adopted from KS 05-459: Part 1:1996)


SL.	Type of micro-organism	Drinking Water	Containerized	Methods of Test
NO.			Drinking Water	
(i)	Total viable counts at 37°C, per ml, max	100	20	KS 05 - 200+
(ii)	Coliforms in 250ml	Shall be absent	Shall be absent	KS 05 - 200
(iii)	E. Coli in 250ml	Shall be absent	Shall be absent	KS 05 - 200
(iv)	Staphylococcus aureus in 250ml	Shall be absent	Shall be absent	KS 05 - 200
(v)	Sulphite reducing anaerobes in 50ml	Shall be absent	Shall be absent	KS 05 - 200
(vi)	Pseudomonas aeruginosa fluores- cence in 250ml	Shall be absent	Shall be absent	KS 05 - 200
(vii)	Streptococuus faecalis	Shall be absent	Shall be absent	KS 05 - 200
(viii)	Shigella in 250ml	Shall be absent	Shall be absent	KS 05 - 200
(ix)	Salmonella in 250ml	Shall be absent	Shall be absent	KS 05 - 200

Schedule 6: Guideline values for discharge into public Sewers [The Environmental Management and Co-ordination (Water Quality) Regulations, 2006]

Parameter	Unit	Guideline value
P ^H	P ^H	6.0-9.0
BOD (5 days at 20 °C) max	mg0 ₂ /l	500
COD, max	mgO ₂ /l	1000
Colour	Hazen units	<40
Temperature, max	°C	20-35
Total suspended solids	mg/l	250
Total non-volatile solids, max	mg/l	2000
Phenols, max	mg/l	10
Detergents	mg/l	15
Oils/Grease, max – where conventional treat- ment shall be used	mg/l	10
Oils/Grease, max – where ponds is the final treatment	mg/l	5
Ammonia Nitrogen	mg/l	20
Substances that will be obnoxious to smell		Shall not be discharged into the sewer
Arsenic (As), max	mg/l	0.02
Cadmium (Cd), max	mg/l	0.5
Cyanide, max	mg/l	2.0
Total Cyanide, max	mg/l	2.0
Cobalt (Co), max	mg/l	1.0
Chromium VI (Cr ^{6+),} max	mg/l	0.05
Total Chromium (Cr), max	mg/I	2.0
Copper (Cu), max	mg/l	1.0
Mercury (Hg), max	mg/l	0.05
Alkyl Mercury	mg/l	Not Detectable
Phosphates	mg/l	30
Free and saline Ammonia as Nitrogen (N-N ₄ / NH ₄), max	mg/l	4.0
Nickel (Ni), max	mg/l	3.0
Nitrates (NO ₃), max	mg/l	20
Lead (Pb), max	mg/l	1.0
Sulphide (S²-), max	mg/l	2.0
Phenols	mg/I	10
Selenium (Se), max	mg/I	0.2
Zinc (Zn), max	mg/l	5.0
Total non ferrous metal, max	mg/l	10
Chlorides (Cl ⁻), max	mg/I	1000

The following chemicals should not be discharged into sewers: Calcium Carbide, Chloroform, Condensing water, Degreasing solvents, radioactive residues, Inflammable solvents and substances likely to interfere with sewers **Schedule 7:** Guideline values for discharge into public water [The Environmental Management and Co-ordination (Water Quality) Regulations, 2006]

Systems Parameter	Unit	Guideline value
1,1,1-trichloroethane	mg/l	3
1,1,2-trichloroethane	mg/l	0.06
1,1-dichloroethylene	mg/l	0.2
1,2-dichloroethane	mg/l	0.04
1,3-dichloropropene	mg/l	0.02
Alkyl Mercury compounds	mg/l	Nd
Ammonia, Ammonium compounds, NO ₃ compounds and	mg/l	100
NO ₂ compounds		100
Arsenic	mg/l	0.02
Arsenic and its compounds	mg/l	0.1
Benzene	mg/l	0.1
P ^H	P ^H	6.5-8.5
BOD (5 days at 20°C) max	mgO ₂ /I	30
COD, max	mgO ₂ /I	50
Temperature, max	°C	<u>+</u> 3°C of ambient tem-
		perature of the water
		body
Boron	mg/l	1.0
Boron and its compounds – non marine	mg/l	10
Boron and its compounds – marine	mg/l	30
Cadmium	mg/l	0.01
Cadmium and its compounds	mg/l	0.1
Carbon tetrachloride	mg/l	0.02
Chromium VI	mg/l	0.05
Chloride	mg/l	250
Chlorine free residue	mg/l	0.10
Chromium total	mg/l	2
Cis-1,2-dichloro ethylene	mg/l	0.4
Copper	mg/l	1.0
Dichloromethane	mg/l	0.2
Dissolved Iron	mg/l	10
Dissolved Manganese	mg/l	10
E.coli	Counts/100ml	Nil
Flouride	mg/l	1.5
Flouride and its compounds (marine and non-marine)	mg/l	8
Lead	mg/l	0.01
Lead and its compounds	mg/l	0.1
n-Hexane extracts (animal and vegetable fats)	mg/l	30
Oil and grease		Nil
Phenols	mg/l	0.001
Selenium	mg/l	0.01
Selenium and its compounds	mg/l	0.1
Hexavalent Chromium VI compounds	mg/l	0.5

Sulphide	mg/l	0.1
Simazine	mg/l	0.03
Total Suspended Solids	mg/l	30
Tetrachloroethylene	mg/l	0.1
Thiobencarb	mg/l	0.1
Thiram	mg/l	0.06
Total coliforms	Counts/100ml	30
Total Cyanogen	mg/l	ND
Total Nickel	mg/l	0.3
Total Dissolved Solids	mg/l	1200
Colour	Hazen Units (H.U)	15
Detergents	mg/l	Nil
Total Mercury	mg/l	0.005
Trichloroethylene	mg/l	0.3
Zinc	V	0.5
Whole effluent toxicity		
Total Phosphorous	mg/l	2
Total Nitrogen	mg/l	2

The following chemicals should not be discharged to any watercourse:

Calcium Carbonate, Chloroform, Condensing water and Degreasing solvents

Schedule 8: Effluent dischargers monthly Report

Name of Industry:

Туре:

Reporting Month/Year:

Duration of discharge licence	
Amount of effluent discharge (m ³ /month)	
Number of discharge points	
Are there special conditions	

Report on tests conducted

Is there a monitoring program in place?

Discharge Points

Discharge Point 1 [Description]	Number of tests planned according to guideline	Number of tests conducted	Number of tests within Kenya Standard
BOD ₅			
COD			
рН			

Suspended solids		
Ammonia, NH4, Nitrate NO3, Nitrite NO2		
Total Dissolved Solids		
E.Coli		
Total coliform		
Please list all parameters		

Discharge Points

Discharge point 1	Results		Guideline value	Remarks	
[Description]	Current month	Previous month			
BOD ₅					
COD					
рН					
Suspended solids					
Ammonia, NH4, Nitrate NO3, Nitrite NO2					
Total Dissolved Solids					
E.Coli					
Total coliform					
Please list all param- eters tested					

Schedule 9: WSP's Sample Schedules for Water Quality Monitoring

Name of Water Service Provider:

Category:

Reporting Year:

System Description:

Water production to town [m ³ /yr]	
Number of separate networks	
Please include layout showing the sampling points in the system	

	Water provided through network	Bacterio-lo	ogical tests	Residual tests	chlorine	pH, turbidity, colour tests		Other physio chemical tests	
	[m³/yr]	Planned	Conducted	Planned	Conducted	Planned	Conducted	Planned	Conducted
Network 1(please specify)									
Network 2(please specify)									
Network 3(please specify)									
Please list all networks									
Total									

Proposed laboratories for analysis

Bacteriological	
Residual chlorine	
pH, turbidity, colour	
Other physiochemical	

If planned test are not equally distributed over time please give reasons:

Name and qualification of person responsible for water quality monitoring:

Schedule 10: WSP's Sample Schedules for Effluent Monitoring

Name of Water Service Provider:

Category:

Reporting Year:

System Description:

Waste water production to town [m ³ /yr]	
Number of separate networks	
Please include layout showing the sampling points in the system	

Waste water provided		BOD ₅	-	COD			nded solids, blved solids	Other test	5
	through network [m³/yr]	Planned	Conducted	Planned	Conducted	Planned	Conducted	Planned	Conducted
Network 1(please specify)									
Network 2(please specify)									
Network 3(please specify)									
Please list all networks									
Total									

Proposed laboratories for analysis

BOD _{5,} COD	
pH, suspended solids, Total dissolved solids	
Other physiochemical	

If planned test are not equally distributed over time please give reasons:

Name and qualification of person responsible for water quality monitoring:

Schedule 11: WSP's Monthly Report on Water Quality Testing

Name of Water Service Provider:

Category:

Reporting Month:

System Description:

Water production to town (m ³ /month)	
Number of separate networks	
Water provided through network $1(m^3/month)$	
Water provided through network 2(m ³ / month)	
Please list all the networks	

Report on required and conducted tests:

Is there a monitoring program in place?.....

Networks

Network 1 [Name or description]	Number of tests planned according to guideline	Number of tests conducted	Number of tests within Standard
Residual chlorine			
Bacteriological			
Turbidity, pH, colour			
Other physio-chemical			

Network 2 [Name or description]	Number of tests required per year	Number of tests conducted	Number of tests within Standard
Residual chlorine			
Bacteriological			
Turbidity, pH, colour			
Other physio-chemical			

Please list all the networks		
------------------------------	--	--

Total number of tests in networks	Number of tests required per year	Number of tests conducted	Number of tests within Standard
Residual chlorine			
Bacteriological			
Turbidity, pH, colour			
Other physio-chemical			

Treatment Work 1	Number of tests required per year	Number of tests conducted	
[Name or description]			
Residual chlorine			
Bacteriological			
Turbidity, pH, colour			
Other physio-chemical			
Treatment chemicals for water	Quantity	Amount Kshs	
production			
Chemica A (please specify)			
Chemica B (please specify)			
Chemica C (please specify)			
Please list all chemicals used			
In case of deviation from No. of planned tests give reasons and state what action was taken:			

In case of non-compliance for water quality above acceptable limits of tested samples give reasons and state what action was taken:

Additional comments

Schedule 12: WSP's Monthly Report on Effluent Monitoring

Name of Water Service Provider:

Category:

Reporting Month:

System Description:

Amount of effluent discharge (m ³ /month)	
Number of separate networks	
Effluent discharge through network $1(m^3/month)$	
Effluent discharge through network 2(m³/ month)	
Please list all the networks	

Report on required and conducted tests

Is there a monitoring program in place?.....

Networks

Network 1	Number of tests required per month	Number of tests conducted	Number of tests within Standard	
[Name or description]	pormonti	conducted	otandara	
BOD ₅				
COD				
рН				
Suspended solids				
Ammonia, NH4, Nitrate NO3, Nitrite NO2				
Total Dissolved Solids				
E.Coli				
Total coliform				

Network 2 [Name or description]	Number of tests required per month	Number of tests conducted	Number of tests within Standard
BOD ₅			
COD			
рН			
Suspended solids			
Ammonia, NH4, Nitrate NO3, Nitrite NO2			
Total Dissolved Solids			
E.Coli			

Please list all the networks			
Total number of tests in networks	Number of tests required per month	Number of tests conducted	Number of tests within Standard
BOD ₅			
COD			
рН			
Other physio-chemical			

In case of deviation from No. of planned tests give reasons and state what action was taken:

In case of non-compliance for quality of discharged effluent above acceptable limits of tested samples give reasons and state what action was taken:

Additional comments

Schedule 13: WSP's Annual Report on Water Quality Testing

Name of Water Service Provider:

Category:

Reporting period:

System Description:

Water production to town (m ³ /yr)	
Number of separate networks	
Water provided through network $1(m^3/yr)$	
Water provided through network 2(m³/yr)	
Please list all the networks	

Report on required and conducted tests:

Is there a monitoring program in place?.....

Networks

Network 1 [Name or description]	Number of tests planned according to guideline	Number of tests conducted	Number of tests within Kenya Standard
Residual chlorine			
Bacteriological			
Turbidity, pH, colour			
Other physio-chemical			

Network 2 [Name or description]	Number of tests required per year	Number of tests conducted	Number of tests within Kenya Standard
Residual chlorine			
Bacteriological			
Turbidity, pH, colour			
Other physio-chemical			

Please list all the networks

Total number of tests in networks	Number of tests required per year	Number of tests conducted	Number of tests within Kenya Standard
Residual chlorine			
Bacteriological			
Turbidity, pH, colour			
Other physio-chemical			

Treatment Work 1	Number of tests required per	Number of tests conducted	
[Name or description]	year		
Residual chlorine			
Bacteriological			
Turbidity, pH, colour			
Other physio-chemical			
Treatment Work 1			
[Name or description]			
Treatment chemicals for water production	Quantity	Amount Kshs	
Chemica A (please specify)			
Chemica B (please specify)			
Chemica C (please specify)			
Please list all chemicals used			
In case of deviation from No. of planned tests give reasons and state what action was taken:			

In case of non-compliance for water quality above acceptable limits of tested samples give reasons and state what action was taken:

Additional comments

Schedule 14: WSP's Annual Report on Effluent Monitoring

Name of Water Service Provider:

Category:

Reporting Year:

System Description:

Amount of effluent discharge (m³/yr)	
Number of separate networks	
Effluent discharge through network $1(m^3/yr)$	
Effluent discharge through network 2(m ³ /yr)	
Please list all the networks	

Report on required and conducted tests

Is there a monitoring program in place?.....

Networks

Network 1 [Name or description]	Number of tests planned per year	Number of tests conducted	Number of tests within Kenya Standard
BOD₅			
COD			
рН			
Suspended solids			
Ammonia, NH4, Nitrate NO3, Nitrite NO2			
Total Dissolved Solids			
E.Coli			
Total coliform			

Network 2 [Name or description]	Number of tests planned per year	Number of tests conducted	Number of tests within Kenya Standard
BOD ₅			
COD			
рН			
Suspended solids			
Ammonia, NH4, Nitrate NO3, Nitrite NO2			
Total Dissolved Solids			
E.Coli			

Total number of tests in networks	Number of tests planned per year	Number of tests conducted	Number of tests within Kenya Standard
BOD₅			
COD			
рН			
Other physio-chemical			

In case of deviation from No. of planned tests give reasons and state what action was taken:

In case of non-compliance for quality of discharged effluent above acceptable limits of tested samples give reasons and state what action was taken:

Additional comments

Schedule 15: WSB's Quarterly Report on Water Quality Monitoring

Name of Water Services Board:

Reporting Quarter:

Issue	Status
Number of WSPs	
Did the WSP utnderake scheduled monitoring as required?	
Were there any unscheduled monitoring undertaken?	
Were there any demand monitoring undertaken?	
Please enumerate measures taken to improve rural water supply	
Other activities undertaken to improve water quality	

Report on tests conducted on Water Quality

Indicator Description	Name of WSP	Type of Monitoring	Date Sampled	Source	Result for the quarter	Result of the previous Quarter	Guideline Value	Remarks
Please list all indicators								

Name (s) of laboratories where analysis was carried out

Schedule 16: WSB's Quarterly Report on Effluent Monitoring

Name of Water Services Board:

Reporting Quarter:

Issue	Status
Number of WSPs	
Number of registered effluent dischargers	
Number of overflowing/broken sewers including period of overflow	
Please enumerate measures to put in place to mitigate the above	
Did the WSP undertake scheduled monitoring as required?	
Were there any unscheduled monitoring undertaken?	
Were there any demand monitoring undertaken?	
Other activities undertaken to improve effluent quality	

Report on tests conducted on Effluent Quality

Indicator Description	Name of WSP	Type of Monitoring	Date Sampled	Source	Result for the quarter	Result of the previous Quarter	Guideline Value	Remarks	
Please list all indicators									
Name (s) of lal	Name (s) of laboratories where analysis was carried out								

Report on broken/overflowing sewers

Name of WSP	Point of overflow	Date reported	Current status date of repair	Status last quarter	Remarks
Please list all sewer overflows					

Schedule 17: WSB's Annual Report on Water Quality Monitoring

Name of Water Services Board:

Reporting Year:

Issue	Status
Number of WSPs	
Did the WSP undertake scheduled monitoring as required?	
Where there any unscheduled monitoring undertaken?	
Where there any demand monitoring undertaken?	
Please enumerate measures taken to improve rural water supply	
Other activities undertaken to improve water quality	

Report on tests conducted on Water Quality

Indicator Description	Name of WSP	Type of Monitoring	Date Sampled	Source	Result for the Year	Result of the previ- ous Year	Guideline Value	Remarks
Please list all indicators								
Name (s) of lab	ooratories wh	nere analysis w	as carried ou	it	1	1	1	

Schedule 18: WSB's Annual Report on Effluent Monitoring

Name of Water Services Board:

Reporting Year:

Issue	Status
Number of WSPs	
Number of registered effluent dischargers	
Number of overflowing/broken sewers including period of overflow	
Please enumerate measures to put in place to mitigate the above	
Did the WSP undertake scheduled monitoring as required?	
Where there any unscheduled monitoring undertaken?	
Where there any demand monitoring undertaken?	
Other activities undertaken to improve effluent quality	

Report on tests conducted on Effluent Quality

Indicator Description	Name of WSP	Type of Monitoring	Date Sampled	Source	Result for the year	Result previous Year	Guideline Value	Remarks
Please list all indicators								
Name (s) of lab	oratories wl	here analysis w	as carried ou	t				

Report on broken/overflowing sewers

Name of WSP	Point of overflow	Date reported	Current status	Status last quarter	Remarks
Please list all sewer					
overflows					